Is It Time To Replace Your Water Aspirator?

A water aspirator is a simple device capable of creating a low strength vacuum for many standard laboratory applications. Though they are inexpensive to purchase and easy to use, the long-term operating costs and environmental impact of laboratory water aspirators can be quite significant.

The above video from Lab Manager follows Linda the Lab Manager as she and her colleagues investigate the real costs of owning and operating a laboratory water aspirator.

Video: Choosing the Best Vacuum Pump for Your Lab Application

 

Are you in the market for a new laboratory vacuum pump? Perhaps you need more information on which pump to choose. A new video, produced by Lab Manager, may provide valuable insights. View the video directly above, or click here.

New KNF Laboratory Products Catalog Available

KNF Neuberger Inc. has recently published an updated Laboratory Products Catalog. The 33-page catalog reflects the newly expanded range of laboratory products offered by KNF Neuberger, Inc. which includes: a complete line of vacuum pumps and accessories, liquid transfer pumps, dosing/metering pumps, rotary evaporators, and vacuum systems.

Organized by application, this comprehensive guide presents the best product selections for rotary evaporation/distillation, degassing, filtration/SPE, fluid aspiration, gel drying, centrifugal concentration, vacuum ovens, multi-user vacuum systems, and metering and transferring liquid. In addition, this piece includes handy product charts for easy comparison.

View the new Laboratory Products Catalog here. Or, request a high-resolution printed version via postal mail by completing the form below.

Technology TIP: Measurement of Pulsating Flow

INTRODUCTION

TechTIP

Like most companies producing gas pumps, KNF uses glass tube and float type flowmeters to measure flow during pump production testing. This type of flowmeter has been used for several decades as they are fast-acting, reliable, and accurate. The normal industry practice is to calibrate this class of instrument using laminar flow. Unfortunately, the pulsating flow from reciprocating pumps produces an artificially high flowrate reading compared to the laminar flow calibration. As a result, all diaphragm and piston pump manufacturers using traditional flowmeters will end up promoting higher flow rate values than what the pumps actually provide.

OUR GOAL

measurement-flow-blogAt KNF, we are passionate about meeting the engineering design challenges of our customers. Our goal is to provide our customers with pumps that meet the actual needs of the system in which they are installed. Along with this goal comes the responsibility to provide data that best represents the performance capabilities for each pump produced at KNF. Simply stated, we want our customers to know the flow rate values we provide will accurately correspond to the actual flow produced by the pump — the true amount of gas delivered; not just an artificially inflated reading.

The flow measurement discrepancy manifests during system-level performance comparisons between continuous flow (non-pulsating) and pulsating pump types, reported to provide the same flow rates. The non-pulsating pump winds up delivering greater flow performance than the pulsating pump that was erroneously thought to be equivalent, skewing results in favor of the non-pulsating pump type.

TechTIP_MoPF_fig1

Figure 1: KNF pulsation-compensated flowmeter

THE SOLUTION

To address this situation, several years of research and development by our flow experts at the KNF Gas Pump Design Center in Freiburg, Germany has culminated in an advanced system for the measurement of pulsating flow. KNF has made an investment to implement this new technology. The resulting pulsation-compensated flowmeters (see Figure 1) are tuned and calibrated to measure pulsating flow more precisely than the traditional glass tube and float type flowmeters.

 

The more accurate flow readings from our pulsation-compensated measurement standard show lower values for flow than the laminar flow based systems used in the past. This document describes why your pump is still providing the same flow performance even though the measured and recorded flow value is lower. Glass tube and float type flowmeters are also called variable area flowmeters as the cross sectional area of the tube varies from smaller at the bottom to larger at the top (see Figure 2 below).

Figure 2

Figure 2: Cross-section illustration of a float type flowmeter

Pulsating flow always creates a higher reading in a float type flowmeter. The reason is that the float cannot move downward quickly enough between pulses. The float will remain on the top of the flow wave (see Figure 3 below). KNF has been aware of this phenomenon for quite some time and has been continually investigating better ways to attenuate the effect of the pulsation. The pulsation-compensated KNF flowmeter assemblies include physical components to minimize the effect of the pulsations.

Figure 3

Figure 3: Impact of pulsation on flowmeter readings

Simply put, our pulsation-compensated flowmeters are dampened to reduce the effect of the pulsations — these values are represented by the green line in the figure below. A dampened flowmeter may read pulsating flow too high if it was calibrated using laminar flow — that is why we use pulsating flow to calibrate our pumps at KNF. Flowmeters with little or no dampening will read artificially high as shown by the red lines.

SUMMARY

This advanced flow measurement system combines variable area flowmeters with a mass-flow calibration system. Optimized for pulsating flow, the system provides the most accurate measurement of flow available today. The improved accuracy is shown in Figure 4 (below).

Figure 4

Figure 4: KNF flowmeter reading (optimized for pulsating flow).

The chart shows flowmeters with a range of 2 – 10 liters per minute calibrated using pulsating and laminar flow compared to a target flow established by a mass flow meter. While this improvement is typical, actual results may vary across the flowmeter size ranges.

To learn more about KNF’s advanced flow measurement system please contact a KNF applications engineer.

KNF’s Laboratory Symposium Offered an Evening of Exploration and Learning

Last week, KNF Neuberger Inc. hosted a Laboratory Pumps and Applications Symposium in collaboration with the Trenton Section of American Chemical Society (ACS). The event, a first of its kind, attracted attendees from local academia and industry.

Beginning in the early evening, the Lab Symposium kicked-off with a mixer featuring beverages and hors d’oeuvres. Attendees became better acquainted with each other, and more familiar with KNF laboratory equipment which was on display throughout the room. Soon after, guests were invited to a guided tour of KNF’s 50,000 square foot manufacturing facility. The tour, led by KNF Director of Sales and Marketing, Eric Pepe, allowed symposium guests to view important aspects of KNF’s pump production area including: assembly and testing stations, high-tech machining equipment, and state-of-the art inventory management systems.

Roland Anderson delivering the Laboratory Symposium presentation.

R. Anderson leads a discussion tailored to the applications employed by those in attendance.

Next, attendees were invited to help themselves to a complimentary hot buffet, featuring local Italian fare. Guests and staff carefully balanced plates, as they made way to their seats for the Laboratory Pumps and Applications presentation, delivered by KNF Laboratory Products Manager, and applications specialist, Roland Anderson (pictured right). The presentation featured a review of pump technologies, their pros/cons, and the benefits of their usage in several typical lab applications.

The evening was capped off with desserts and coffee, as well as a door prize drawing. Congratulations to the prize winners, and thank you to all who helped make this initial KNF Laboratory Pumps and Applications Symposium a success!

If you would like to schedule a similar KNF lunch-and-learn symposium with KNF, at your facility, please contact a laboratory applications specialist.

 

 

KNF to Host Lab Pumps & Applications Symposium in Collaboration with Local ACS

Pumps are an important component in practically all chemistry laboratories. Yet for such a common device, selecting the correct pump for a particular application is often a challenge.

Join us for a Laboratory Pumps and Applications Symposium

Join us on Nov. 4th for a Laboratory Pumps & Applications Symposium

KNF Neuberger, in collaboration with the Trenton Section of the American Chemical Society, will be hosting a symposium on “Laboratory Pumps and Applications”. The presentation will focus on taking the mystery out of laboratory pumps, looking at the most common applications and the pumps that best support them. Discussion topics include:

  • What is the best pump type for my application?
  • What accessories are available to help me optimize the performance of the pump in my application?
  • What are the signs that my pump is in need of maintenance or repair?
  • And much more!


LOCATION

This exclusive, co-sponsored event will be held at KNF’s state-of-the-art, 50,000 square ft. manufacturing facility at Two Black Forest Road in Trenton, NJ.

SCHEDULE
5:30 pm – Mixer with drinks and appetizers, plant tours and product demos
6:30 pm – Dinner and presentation
7:30 pm – Coffee and dessert
Refreshments and dinner are complimentary. There will also be a drawing for door prizes.

PRESENTER
Roland Anderson is the Laboratory Products Manager and applications specialist at KNF Neuberger, Inc.

RSVP
Reservations are required, as seating is limited, so be sure to register now!

A Simple Lab Equipment Change with an Immediate, Positive Environmental Impact

Right now there is a considerable water shortage throughout the United States, particularly in California, and other Western states. Drought conditions and other environmental factors have wreaked havoc on local agriculture, while the growing water demand of a steadily increasing population has led to a severe water scarcity situation. Moreover, what is currently limited to the Western United States will soon extend throughout the entire country; according to the U.S. Government Accountability Office – 40 of 50 states have at least one region that’s expected to face some kind of water shortage within the next 10 years. This growing national emergency should serve as considerable cause for concern as there are few natural resources as vital to our very survival than water. This isn’t just a U.S. problem either. The water crisis is even worse in other parts of the world where the infrastructure to collect and/or distribute water is poor or non-existent. It would appear that this is, in fact, everybody’s problem.

water aspiratorThe good news is that, while everyone is affected by this water shortage, there are steps that anyone can take to help address and improve the issue. In fact, making one simple change to your laboratory equipment can help save over 50,000 gallons of water per year! In a recent article published by Laboratory Equipment, KNF Laboratory Products Manager, Roland Anderson explains why you should get rid of your water aspirator.

Read article: “Last Word: Why You Should Get Rid of Your Water Aspirator” (Laboratory Equipment, Sep. 2015) >>

Also notable: “Water Aspirators: Cheap Pumps with Environmental Impact and High Operating Costs” >>